

01. [Diverio, 2000] Desenvolver uma máquina de Turing, sobre o alfabeto {a, b}, que verifique o duplo balanceamento da entrada fornecida pelo usuário, ou seja, D = {aⁿbⁿ | n ≥ 0}. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
aabb	indiferente	aceita
bbaa	indiferente	rejeita
abab	indiferente	rejeita
ab	indiferente	aceita
β	indiferente	aceita

02. Desenvolver uma máquina de Turing, sobre o alfabeto {0, 1}, que verifique se os números binários fornecidos pelo usuário são números binários pares. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
1010	indiferente	aceita
1011	indiferente	rejeita
11	indiferente	rejeita
10	indiferente	aceita
β	indiferente	rejeita

03. Desenvolver uma máquina de Turing, que verifique se duas palavras sobre o alfabeto {a, b, \$} são idênticas. O símbolo \$ é utilizado como separador das duas palavras. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
abb\$abb	indiferente	aceita
abb\$bba	indiferente	rejeita
aa\$bb	indiferente	rejeita
\$	indiferente	aceita
β	indiferente	rejeita

04. [Diverio, 2000] Desenvolver uma máquina de Turing, sobre o alfabeto {a, b}, que verifique se a palavra fornecida pelo usuário é uma palavra palíndroma. Palavras palíndromas são palavras que lidas da esquerda para a direita ou vice-versa possuem o mesmo significado, como por exemplo, a palavra **arara** ou **ovo**. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
abba	indiferente	aceita
abab	indiferente	rejeita
bba	indiferente	rejeita
ababa	indiferente	aceita
β	indiferente	aceita

05. [Diverio, 2000] Desenvolver uma máquina de Turing, que concatene duas palavras sobre o alfabeto {a, b, \$}. O símbolo \$ é utilizado como separador das duas palavras. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
abb\$abb	abbabb	aceita
abb\$bba	abbbba	aceita
aa\$bb	aabb	aceita
\$	β	aceita
β	indiferente	rejeita

06. Desenvolver uma máquina de Turing, sobre o alfabeto {1, -}, que realize a subtração unária de dois números fornecidos pelo usuário. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
111-11	1	aceita
111-111	β	aceita
111-1111	indiferente	rejeita
-	β	aceita
β	indiferente	rejeita

07. Desenvolver uma máquina de Turing, sobre o alfabeto {a, b}, que reconheça palavras que contenham a mesma quantidade de símbolos a's e b's, independentemente da ordem como os símbolos apareçam na entrada. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
baba	indiferente	aceita
bbaab	indiferente	rejeita
aabaa	indiferente	rejeita
bbaa	indiferente	aceita
β	indiferente	aceita

08. Desenvolver uma máquina de Turing, sobre o alfabeto {a, b}, que duplique os caracteres presentes na palavra fornecida pelo usuário. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
ab	aabb	aceita
aba	aabbaa	aceita
bba	bbbbaa	aceita
baba	bbaabbaa	aceita
β	β	aceita

09. Desenvolver uma máquina de Turing, sobre o alfabeto {a, b}, que duplique a palavra fornecida pelo usuário. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status – Máquina
ab	abab	aceita
aba	abaaba	aceita
bba	bbabba	aceita
baba	babababa	aceita
β	β	aceita

10. Desenvolver uma máquina de Turing, sobre o alfabeto {1}. Suponha que as palavras de entrada são números naturais representados em unário, onde, por exemplo, 3 é denotado por 111, 4 é denotado por 1111, e assim por diante. A máquina deve aceitar os naturais pares e rejeitar os naturais ímpares. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
1111	indiferente	aceita
111	indiferente	rejeita
11111	indiferente	rejeita
11	indiferente	aceita
β	indiferente	rejeita

11. Desenvolver uma máquina de Turing, sobre o alfabeto {a, b}, que elimine os caracteres repetidos da entrada fornecida pelo usuário. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
aabb	ab	aceita
baba	baba	aceita
bbbba	ba	aceita
bbbaaaba	baba	aceita
β	β	aceita

12. Desenvolver uma máquina de Turing, sobre o alfabeto {a, b, \$}, que verifique se a segunda palavra é a inversa da primeira palavra. O símbolo \$ é utilizado como separador das duas palavras. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fila	Saída – Fila	Status
abb\$bba	indiferente	aceita
abb\$baa	indiferente	rejeita
baba\$abab	indiferente	aceita
\$	indiferente	aceita
ε	indiferente	rejeita

13. Desenvolver uma máquina de Turing, sobre o alfabeto {a, b, \$}, que verifique se os caracteres da segunda palavra são os inversos dos caracteres da primeira palavra. O símbolo \$ é utilizado como separador das duas palavras. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
baba\$abab	indiferente	aceita
aabb\$aabb	indiferente	rejeita
bba\$abb	indiferente	rejeita
\$	indiferente	aceita
β	indiferente	rejeita

14. [Diverio, 2000] Desenvolver uma máquina de Turing, sobre o alfabeto {a, b, c}, que verifique o triplo balanceamento da entrada fornecida pelo usuário, ou seja, D = {aⁿbⁿcⁿ | n ≥ 0}. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
aabbcc	indiferente	aceita
ccbbaa	indiferente	rejeita
abcabc	indiferente	rejeita
abc	indiferente	aceita
β	indiferente	aceita

15. Desenvolver uma máquina de Turing, sobre o alfabeto {0, 1}, que verifique se os números binários fornecidos pelo usuário são números binários ímpares. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
1011	indiferente	aceita
1010	indiferente	rejeita
10	indiferente	rejeita
11	indiferente	aceita
β	indiferente	rejeita

16. Desenvolver uma máquina de Turing, sobre o alfabeto {1}. Suponha que as palavras de entrada são números naturais representados em unário, onde, por exemplo, 3 é denotado por 111, 4 é denotado por 1111, e assim por diante. A máquina deve aceitar os naturais ímpares e rejeitar os naturais pares. A seguir são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com os seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
111	indiferente	aceita
1111	indiferente	rejeita
11	indiferente	rejeita
1	indiferente	aceita
β	indiferente	rejeita

17. Desenvolver uma máquina de Turing, sobre o alfabeto {1, +}, que realize a adição unária de dois números fornecidos pelo usuário. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
111+11	11111	aceita
111+111	111111	aceita
111+1111	1111111	aceita
+	β	aceita
β	indiferente	rejeita

- 18. [Diverio, 2000] Qual a importância do estudo da Máquina de Turing na Ciência da Computação?
- **19.** [Diverio, 2000] Considerando a Máquina de Turing cuja função programa Π é apresentada a seguir, verifique qual o estado final após a computação para as seguintes palavras:

$$M = (\{a, b\}, \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}, \Pi, q_0, \{q_7\}, \{A, B\}, \beta, \otimes)$$

П	8	а	b	А	В	β
q ₀	(q_0, \otimes, D)	(q ₁ , A, D)	(q ₀ , b, D)	(q ₀ , A, D)	(q ₀ , B, D)	(q ₄ , β, E)
q ₁	-	(q ₁ , a, D)	(q ₁ , b, D)	-	(q ₂ , B, E)	(q ₂ , β, E)
q ₂	(q ₅ , ⊗, D)	(q ₂ , a, E)	(q ₃ , B, E)	(q ₂ , A, E)	(q ₂ , B, E)	-
q ₃	(q_0, \otimes, D)	(q ₃ , a, E)	(q ₃ , b, E)	(q ₀ , A, D)	-	-
Q4	(q_7, \otimes, D)	-	(q ₆ , b, D)	(q ₄ , A, E)	(q ₄ , B, E)	-
Q 5	-	(q ₆ , a, D)	-	(q ₅ , A, D)	(q ₅ , B, D)	-
q ₆	(q ₆ , ⊗, D)	(q ₆ , a, D)	(q ₆ , b, D)	(q ₆ , A, D)	(q ₆ , B, D)	(q ₆ , β, E)
q 7	-	-	-	-	-	-

- a) ab
- b) aba
- c) aaba
- **20.** Desenvolver uma máquina de Turing, sobre o alfabeto {(,)}, que verifique se uma sequência de parênteses é bom formada. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
()	indiferente	aceita
) (indiferente	rejeita
(()())	indiferente	aceita
(()))()	indiferente	rejeita
β	indiferente	aceita

21. Desenvolver uma máquina de Turing, sobre o alfabeto {x, y}, que duplique ao contrário a palavra fornecida pelo usuário. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
xy	хуух	aceita
ххуу	ххуууухх	aceita
уухху	ууххууххуу	aceita
хухх	хуххххух	aceita
β	β	aceita

22. Desenvolver uma máquina de Turing, sobre o alfabeto $\{x, y, z\}$, que reconheça as palavras pertencentes a linguagem $L = \{x^ny^{2n}z^n \mid n > 0\}$. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
хууг	indiferente	aceita
ххуугг	indiferente	rejeita
ххуууугг	indiferente	aceita
хууггг	indiferente	rejeita
β	indiferente	rejeita

23. Desenvolver uma máquina de Turing, sobre o alfabeto $\{x, y\}$, que reconheça as palavras pertencentes a linguagem $L = \{x^m y^n x^m y^n \mid n > 0 \text{ e } m > 0\}$. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
хуху	indiferente	aceita
ххуухху	indiferente	rejeita
ххуууххууу	indiferente	aceita
хуххуу	indiferente	rejeita
β	indiferente	rejeita

24. Desenvolver uma máquina de Turing, que verifique se duas palavras sobre o alfabeto {a, b, \$} são diferentes. O símbolo \$ é utilizado como separador das duas palavras. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
abb\$aba	indiferente	aceita
abb\$abb	indiferente	rejeita
aa\$bb	indiferente	aceita
\$	indiferente	rejeita
β	indiferente	rejeita

25. Desenvolver uma máquina de Turing, sobre o alfabeto {a, b, c}, que reconheça a linguagem L = {aⁿb²ⁿc³ⁿ | n ≥ 1}. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
abbccc	indiferente	aceita
aabbcc	indiferente	rejeita
acccbb	indiferente	rejeita
aabbbbccccc	indiferente	aceita
β	indiferente	rejeita

26. Desenvolver uma máquina de Turing, sobre o alfabeto {a, b}, que reconheça a linguagem L = {aⁿb³ⁿaⁿ | n ≥ 1}. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
abbba	indiferente	aceita
aabbbaa	indiferente	rejeita
abbbaa	indiferente	rejeita
aabbbbbbaa	indiferente	aceita
β	indiferente	rejeita

27. Desenvolver uma máquina de Turing, sobre o alfabeto {a, b}, que reconheça a linguagem L = { aⁿbⁿ⁺² | n ≥ 0}. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
aabbbb	indiferente	aceita
bbaa	indiferente	rejeita
abab	indiferente	rejeita
abbb	indiferente	aceita
bb	indiferente	aceita

28. Desenvolver uma máquina de Turing que reconheça a linguagem L = { ww^R| w ∈ {a, b}*}. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
abba	indiferente	aceita
bab	indiferente	rejeita
а	indiferente	rejeita
aa	indiferente	aceita
β	indiferente	aceita

29. Desenvolver uma máquina de Turing, sobre o alfabeto {0, 1}, que produza como resultado o valor binário fornecido pelo usuário divido por 4. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
β	β	rejeita
0 ou 1	0	aceita
00 ou 01 ou 10 ou 11	0	aceita
1010	10	aceita
101101	1011	aceita

30. Desenvolver uma máquina de Turing, sobre o alfabeto {0, 1, 2, 3, 4, 5, 6, 7}, que verifique se os números octais fornecidos pelo usuário são números octais pares. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
30	indiferente	aceita
65	indiferente	rejeita
743	indiferente	rejeita
152	indiferente	aceita
β	indiferente	rejeita

31. Desenvolver uma máquina de Turing, sobre o alfabeto {A, C, G, T, \$}, que verifique se duas cadeias polinucleotídicas constituem um DNA válido. Para um DNA ser válido, as pontes de hidrogênio devem ser formadas entre os pares de bases A↔T e C↔G, ou seja, Adenina com Timina e Citosina com Guanina. O símbolo \$ é utilizado como separador das duas cadeias de nucleotídeos. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
AG\$TC	indiferente	aceita
CT\$AG	indiferente	rejeita
AGCT\$TCGA	indiferente	aceita
AGCT\$TCCA	indiferente	rejeita
\$	indiferente	aceita

32. Desenvolver uma máquina de Turing, sobre o alfabeto $\{0\}$, que reconheça a linguagem L = $\{0^{2^n} \mid n \ge 0\}$. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
0	indiferente	aceita
00	indiferente	aceita
0000	indiferente	aceita
00000000	indiferente	aceita
000000	indiferente	rejeita

33. Desenvolver uma máquina de Turing, sobre o alfabeto {a, b}, que reconheça palavras que contenham uma quantidade de símbolos a's e b's diferentes, independentemente da ordem como os símbolos apareçam na entrada. A seguir, são apresentados alguns exemplos de entradas possíveis de serem fornecidas pelo usuário com seus respectivos resultados.

Entrada – Fita	Saída – Fita	Status
baba	indiferente	rejeita
bbaab	indiferente	aceita
aabaa	indiferente	aceita
bbaa	indiferente	rejeita
β	indiferente	rejeita